comment écrire json dans dataframe?

J'ai ce json brut d'annonces de recherche Apple retourné. Comment puis-je l'écrire dans dataframe? Lorsque j'ai essayé de lire les détails de la campagne, c'est comme suit :

 {
"other":false
"granularity":[...]
"metadata":{...}
}




{
"other":false
"granularity":[
0:{
"impressions":481
"taps":42
"installs":25
"newDownloads":20
"redownloads":5
"latOnInstalls":0
"latOffInstalls":1
"ttr":0.0873
"avgCPA":{
"amount":"1.338"
"currency":"USD"
}
"avgCPT":{
"amount":"0.7964"
"currency":"USD"
}
"avgCPM":{
"amount":"69.5426"
"currency":"USD"
}
"localSpend":{
"amount":"33.45"
"currency":"USD"
}
"conversionRate":0.5952
"date":"2022-04-01"
}
1:{
"impressions":962
"taps":27
"installs":12
"newDownloads":10
"redownloads":2
"latOnInstalls":0
"latOffInstalls":1
"ttr":0.0281
"avgCPA":{
"amount":"2.8925"
"currency":"USD"
}
"avgCPT":{
"amount":"1.2856"
"currency":"USD"
}
"avgCPM":{
"amount":"36.0811"
"currency":"USD"
}
"localSpend":{
"amount":"34.71"
"currency":"USD"
}
"conversionRate":0.4444
"date":"2022-04-02"
}
2:{
"impressions":478
"taps":22
"installs":13
"newDownloads":11
"redownloads":2
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.046
"avgCPA":{
"amount":"2.9746"
"currency":"USD"
}
"avgCPT":{
"amount":"1.7577"
"currency":"USD"
}
"avgCPM":{
"amount":"80.8996"
"currency":"USD"
}
"localSpend":{
"amount":"38.67"
"currency":"USD"
}
"conversionRate":0.5909
"date":"2022-04-03"
}
3:{
"impressions":1014
"taps":18
"installs":6
"newDownloads":5
"redownloads":1
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.0178
"avgCPA":{
"amount":"4.63"
"currency":"USD"
}
"avgCPT":{
"amount":"1.5433"
"currency":"USD"
}
"avgCPM":{
"amount":"27.3964"
"currency":"USD"
}
"localSpend":{
"amount":"27.78"
"currency":"USD"
}
"conversionRate":0.3333
"date":"2022-04-04"
}
4:{
"impressions":727
"taps":14
"installs":5
"newDownloads":5
"redownloads":0
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.0193
"avgCPA":{
"amount":"3.356"
"currency":"USD"
}
"avgCPT":{
"amount":"1.1986"
"currency":"USD"
}
"avgCPM":{
"amount":"23.0812"
"currency":"USD"
}
"localSpend":{
"amount":"16.78"
"currency":"USD"
}
"conversionRate":0.3571
"date":"2022-04-05"
}
5:{
"impressions":272
"taps":19
"installs":9
"newDownloads":8
"redownloads":1
"latOnInstalls":1
"latOffInstalls":2
"ttr":0.0699
"avgCPA":{
"amount":"3.8856"
"currency":"USD"
}
"avgCPT":{
"amount":"1.8405"
"currency":"USD"
}
"avgCPM":{
"amount":"128.5662"
"currency":"USD"
}
"localSpend":{
"amount":"34.97"
"currency":"USD"
}
"conversionRate":0.4737
"date":"2022-04-06"
}
6:{
"impressions":365
"taps":17
"installs":5
"newDownloads":5
"redownloads":0
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.0466
"avgCPA":{
"amount":"6.226"
"currency":"USD"
}
"avgCPT":{
"amount":"1.8312"
"currency":"USD"
}
"avgCPM":{
"amount":"85.2877"
"currency":"USD"
}
"localSpend":{
"amount":"31.13"
"currency":"USD"
}
"conversionRate":0.2941
"date":"2022-04-07"
}
7:{
"impressions":622
"taps":17
"installs":3
"newDownloads":3
"redownloads":0
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.0273
"avgCPA":{
"amount":"8.7567"
"currency":"USD"
}
"avgCPT":{
"amount":"1.5453"
"currency":"USD"
}
"avgCPM":{
"amount":"42.2347"
"currency":"USD"
}
"localSpend":{
"amount":"26.27"
"currency":"USD"
}
"conversionRate":0.1765
"date":"2022-04-08"
}
8:{
"impressions":498
"taps":20
"installs":8
"newDownloads":4
"redownloads":4
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.0402
"avgCPA":{
"amount":"4.1525"
"currency":"USD"
}
"avgCPT":{
"amount":"1.661"
"currency":"USD"
}
"avgCPM":{
"amount":"66.7068"
"currency":"USD"
}
"localSpend":{
"amount":"33.22"
"currency":"USD"
}
"conversionRate":0.4
"date":"2022-04-09"
}
9:{
"impressions":596
"taps":19
"installs":4
"newDownloads":3
"redownloads":1
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.0319
"avgCPA":{
"amount":"7.4575"
"currency":"USD"
}
"avgCPT":{
"amount":"1.57"
"currency":"USD"
}
"avgCPM":{
"amount":"50.0503"
"currency":"USD"
}
"localSpend":{
"amount":"29.83"
"currency":"USD"
}
"conversionRate":0.2105
"date":"2022-04-10"
}
10:{
"impressions":325
"taps":10
"installs":4
"newDownloads":4
"redownloads":0
"latOnInstalls":0
"latOffInstalls":0
"ttr":0.0308
"avgCPA":{
"amount":"4.565"
"currency":"USD"
}
"avgCPT":{
"amount":"1.826"
"currency":"USD"
}
"avgCPM":{
"amount":"56.1846"
"currency":"USD"
}
"localSpend":{
"amount":"18.26"
"currency":"USD"
}
"conversionRate":0.4
"date":"2022-04-11"
}
]
"metadata":{
"campaignId":1023861985
"campaignName":"Mar_2022"
"deleted":false
"campaignStatus":"ENABLED"
"app":{
"appName":"xxxx"
"adamId":1581963198
}
"servingStatus":"RUNNING"
"servingStateReasons":NULL
"countriesOrRegions":[
0:"ID"
]
"modificationTime":"2022-03-31T19:14:12.761"
"totalBudget":{
"amount":"960"
"currency":"USD"
}
"dailyBudget":{
"amount":"32"
"currency":"USD"
}
"displayStatus":"RUNNING"
"supplySources":[
0:"APPSTORE_SEARCH_RESULTS"
]
"adChannelType":"SEARCH"
"orgId":3718600
"countryOrRegionServingStateReasons":{}
"billingEvent":"TAPS"
"countryOrRegion":"ID"
}
}

Le dictionnaire en granulité et métadonnées contient une autre liste. Cependant, quand j'ai essayé de courir

for s in campaign:
print(s)

Il ne renvoie que les autres. Quand j'ai essayé

for s in campaign:
for x in s:
print (x)

Il renvoie o,t,h,e,r

Comment accéder aux valeurs pour les intégrer dans une trame de données ?


Solution du problème

Veuillez partager la réponse complète de l'API afin d'obtenir la bonne solution. Mais en général, la fonction pandas json_normalize() peut fonctionner.

import pandas as pd
pd.json_normalize(response_dictionary)

Commentaires

Posts les plus consultés de ce blog

Erreur Symfony : "Une exception a été levée lors du rendu d'un modèle"

Détecter les appuis sur les touches fléchées en JavaScript

Une chaîne vide donne "Des erreurs ont été détectées dans les arguments de la ligne de commande, veuillez vous assurer que tous les arguments sont correctement définis"